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Abstract

On the basis of the molecular dynamics algorithm proposed by Kalibaeva et al. [G. Kalibaeva, M. Ferrario, G. Ciccotti,
Mol. Phys. 101 (2003) 765.] for systems with holonomic constraints in isobaric–isothermal ensemble, we discuss a new
recursive algorithm which eliminates the inconsistency associated with the double calculation of constraint forces present
in RATTLE. The algorithm is tested on bulk water and on a system containing a polymer with a large number of con-
straints to evaluate the CPU gain with respect to the usual RATTLE algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular dynamics simulations, especially of large molecules like polymers or biological compounds, were
made possible thanks to the introduction of constraints on atomic distances: this prevents strong chemical
bonds, which require very stiff forces to be simulated properly, to ruin the efficiency of the simulation.

Let us denote by i, j two atoms linked by a constraint r ¼ ðrj � riÞ2 � d2
ij ¼ 0, where ri and rj are the posi-

tions of the atoms and dij the fixed distance between them. The resulting constraint force on atom i at t is given
by GiðtÞ ¼ kðtÞ$rirðtÞ, where k(t) is the Lagrange multiplier associated with the constraint r = 0. Like the posi-
tions ri, Lagrange multipliers have to be determined at each time t. If there are k constraints and N is the num-
ber of atoms, we have 3N + k unknowns linked by 3N + k equations (3N equations of motion and k
constraints relationships), so that the unicity of the trajectory, starting from an initial configuration satisfying
the constraints, is assured. It can be shown that the variables {k} can be theoretically calculated by recursively
solving linear systems involving the k’s and their time derivatives [1]. However with this method, the con-
straints will be satisfied only up to the order of the chosen algorithm and the geometric characteristics of
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the atomic structure bound by the constraints will be quickly lost. SHAKE was introduced to solve this prob-
lem [1,2]: it allows to satisfy rigorously all the constraints {ra = 0}a=1,k, at each step of integration, without
introducing extra errors beyond the algorithmic error. In the original paper, the algorithm SHAKE is asso-
ciated with the classical Verlet algorithm, which does not need the velocities to compute the new positions:
an iterative process allows to calculate the constraint forces at t (and Lagrange multipliers {ka(t)}) in such
a way that at each step the coordinates rigorously satisfy the constraints {ra = 0}a=1,k within a chosen accu-
racy [1,2]. In the velocity Verlet algorithm, instead, both coordinates and momenta are computed, so that the
constraints {ra = 0}a=1,k and their time derivative f _ra ¼ 0ga¼1;k have to be imposed at each time step indepen-
dently. That is why, in the velocity Verlet algorithm adapted to constraints, RATTLE [3], SHAKE is called
once, after the implementation of atomic positions, to get the new positions at t + Dt ({ka(t)}); a second time,
always at t + Dt, to evaluate the momenta at t + Dt ({ka(t + Dt)}); and then another time, at t + 2Dt, again in
relation to the atomic positions, to compute again {ka(t + Dt)}a=1,k. SHAKE is then used twice to calculate the
k’s at the same time. To have an algorithm exact, as far as constraints are considered, the {ka(t + Dt)}a=1,k

calculated at the end of the momentum step are not used for getting the positions at t + 2Dt in the following
step. The reason is that the constraints would not be exactly satisfied anymore, and, after a few steps, the
atomic constrained structures would loose their geometrical characteristics. Having re-applied SHAKE, dif-
ferent values of k’s are computed and used in the algorithm. This inconsistency, although of minor numerical
importance, requires also a double call to SHAKE (which is the signature of RATTLE) involving some waste
of computer time.

Since velocity Verlet algorithm, contrary to the original Verlet algorithm, is compatible with the rigourous
formalism introduced by Tuckerman et al. [4] to simulate non-hamiltonian systems (e.g. NVT, NPT Nosé style
dynamics), it can be interesting to avoid the inconsistency of the double calculation of constraints, introduced
by Andersen [3]. Recently Kalibaeva et al. introduced a correct treatment of constraints in the formalism pro-
posed by Tuckerman et al., to produce correct and simple MD algorithms to simulate isothermal–isobaric
ensembles in systems subject to holonomic constraints and with a molecular representation of the virial [5].
They showed that, by monitoring the parameter number of degrees of freedom in the Nosé dynamics, the
use of a Nosé-Hoover chain in the equations of motion [6,7] is not necessary to retrieve the proper distribution
function in NPT ensemble. In this algorithm, however, the constraints were still calculated twice, in accor-
dance with RATTLE algorithm. We will show in this paper that the calculation of the constraint forces at
time t, achieved after positions implementation, can be used to evaluate the momenta at t � Dt without com-
puting the Lagrange multipliers. We will so show that the inconsistency associated with the double calculation
of constraints can be avoided. In Section 2, we propose the new version of Kalibaeva algorithm, which needs
the evaluation of constraint forces only once in a step. In Section 3, we illustrate the implementation in bulk
water, but we evaluate also the fraction of CPU time that can be saved when the system contains a molecule
connected by a large number of constraints such as it happens for long polymers. Section 4 presents some con-
cluding remarks.

2. Implementation of the dynamics in (NPT) ensemble

2.1. Equations of motion

The system is composed of n molecules containing nl atoms each and is submitted to G ¼
Pn

l¼1kl hol-
onomic molecular constraints of type ra

lðrÞ ¼ 0 where a = 1, kl and l = 1, n with kl the number of con-
straints inside the molecule l. The equations of motion we used to describe the dynamics of this system
are almost the same as Kalibaeva et al. [5] but with center-of-mass positions and relative positions of atoms
decoupled.

The equations of motion become
_r0li ¼
p0li

mli

_p0li ¼ Fli þGli �
mli

Ml
Fl � p0li

P S

MS
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_Rl ¼
Pl

Ml
þ Rl

P V

3VMV

_Pl ¼ Fl � Pl
P S

MS
þ P V

3VMV

� �

_V ¼ P V

MV

_P V ¼ ½P�PEXT� � P V
P n

Mn

_g ¼ P S

MS

_n ¼ P n

Mn

_P S ¼ gkB½T � T EXT�

_P n ¼
P 2

V

MV
� kBT EXT ð1Þ
where Rl and Pl, with l = 1, . . .,n, are respectively the center-of-mass positions and momenta of the n mol-
ecules, r0li and p0li, with i = 1, . . .,nl, are the positions and momenta of the nl atoms of a molecule relative
to those of the center of mass (r0li ¼ rli � Rl and p0li ¼ pli �

mli

Ml
Pl where mli is the mass of the atom i of

the molecule l and Ml the total mass of the molecule); Fli are the forces on the atoms, Fl the total forces
on the molecules and Gli are the constraint forces. V and PV are respectively the volume and the volume
momentum of the system, associated with the inertial factor MV; g is a parameter, to be put equal to
3N � G; kB, TEXT and PEXT are respectively Boltzmann constant, external temperature and pressure. For
the internal molecular pressure, we have:
P ¼ 1

3V

X
l

P2
l

Ml
þ Fl:Rl

" #
� o/

oV
where / is the potential, which may have an explicit volume dependence, and, for the internal temperature,
T ¼ 1

gkB

X
i;l

p02li

mli
þ
X

l

P2
l

Ml

" #
(n,Pn) and (g,PS) are the variables corresponding to the thermostats for volume and particle momenta respec-
tively. Their associated inertial factors are Mn and MS.

The conserved quantity is
H 0 ¼ Hðp0; r0;R; P Þ þ gkBT EXTgþ kBT EXTnþPEXTV þ P 2
V

2MV
þ P 2

S

2MS
þ

P 2
n

2Mn
¼ C1
where H(p 0,r 0,R,P) is the sum of the kinetic and potential energies of the original system.
It can be checked that the equations for rli ¼ r0li þ Rl and pli ¼ p0li þ

mli

Ml
Pl are exactly the equations of

motion of Kalibaeva et al. However, if N ¼
Pn

l¼1nl is the total number of atoms of the system, we have here
6(N + n) equations for the atomic degrees of freedom. However, the variables are linked by 6n additional con-
straints: rklþ1

l ¼
Pnl

i¼1mlir
0
li ¼ 0 and _rklþ1

l ¼
Pnl

i¼1p0li ¼ 0. The constraint forces are given by
Gli ¼
Xklþ1

a¼1

ka
l$rlir

a
l

where ka
l are the Lagrange multipliers.

The system can be treated with the 6(N + n) equations and the 6n additional constraints, or nl � 1 indepen-
dent variables can be chosen for each molecule l, leading to 6(N � n) equations for a subset of r 0 and p 0. In the
latter case, all linearly dependent variables are eliminated.
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It can be shown [5] that the partition function, deriving from these equations of motions and constraints,
corresponds to the correct isothermal–isobaric distribution in the presence of constraints.
2.2. Explicit reversible integrator

Let us denote C = [rN, pN, V, PV, g, Pg, n, Pn] the vector of the 6(N + n) + 6 variables of the system. C(t) at
time t can be obtained from C by applying the evolution operator [8]:
CðtÞ ¼ expðiLtÞ

To get a useful algorithm, the Liouville operator iL, associated with the dynamics of Eq. (1), can be decom-

posed as
iL ¼ iL1 þ iL2 þ � � � þ iL13 þ iL14
where:
iL1 ¼
p0li

mli
rr0li

iL2 ¼
Pl

Ml
rRl

iL3 ¼
P V

3VMV
RlrRl

iL4 ¼
P V

MV

o

oV

iL5 ¼ ½PðtÞ �PEXT�
o

oP V

iL6 ¼ �P V
P n

Mn

o

oP V

iL7 ¼ gkB½T ðtÞ � T EXT�
o

oP S

iL8 ¼ FlrPl

iL9 ¼ �
P S

MS
þ P V

3VMV

� �
PlrPl

iL10 ¼ Fli þGli �
mli

Ml
Fl

� �
rp0li

iL11 ¼ �
P S

MS
p0lirp0li

iL12 ¼
P 2

V

MV
� kBT EXT

� �
o

oP n

iL13 ¼
P n

Mn

o

on

iL14 ¼
P S

MS

o

og
The propagator for a time step Dt can be obtained by applying Trotter formula to this decomposition of L

[9]
expðiLDtÞ ¼ expðiL14Dt=2Þ expðiL13Dt=2Þ � � � � � expðiL2Dt=2Þ expðiL1DtÞ expðiL2Dt=2Þ � � � �
� expðiL13Dt=2Þ expðiL14Dt=2Þ
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To get a recursive formulation, these operators are applied from the left [10]. The useful properties to con-
sider for our transformations are:
eC o
oxDtf ðxÞ ¼ f ðxþ CDtÞ
easily to derive by a Taylor expansion of the l.h.s. and
eCx o
oxDtf ðxÞ ¼ eC o

o ln xDtf ðeln xÞ ¼ f ðeCDtxÞ

The algorithm then reads:
Steps 1–3. Application of operators iL14–iL12 from the left:
gI ¼ gðtÞ þ P SðtÞ
MS

Dt
2

nI ¼ nðtÞ þ P nðtÞ
Mn

Dt
2

P I
n ¼ P nðtÞ þ

P V ðtÞ2

MV
� kBT EXT

" #
Dt
2

Steps 4–5. Application of operators iL11–iL10:
At the end of Step 5, the propagation of atoms’ momenta is done. Here is where our algorithm differs from

the standard procedure. In the following steps, the standard algorithm and ours will be explained separately.
� Standard procedure
In the standard procedure, p0Ili are calculated from p0liðtÞ, the momenta of the atoms at time t. The applica-

tion of L11 on p0li leads to
p0Ili ¼ p0liðtÞaðtÞ
where
aðtÞ ¼ exp �Dt
2

P SðtÞ
MS

� �
Then, the application of L10 leads to
p0II
li ¼ p0Ili þ

Dt
2

FliðtÞ þGliðtÞ �
mli

Ml
FlðtÞ

� �
At this point, Gli(t) is unknown, then the equation is split in two to isolate the term coming from the
constraints:
p0II
li ¼ p0WII

li þ p0CII
li
Only:
p0WII
li ¼ p0Ili þ

Dt
2

FliðtÞ �
mli

Ml
FlðtÞ

� �
¼ p0II

li �
Dt
2

GliðtÞ
can be calculated. p0CII
li ¼ Dt

2
GliðtÞ and p0II

li will remain unknown until Step 14, when the positions will be
implemented and plugged into SHAKE procedure to get Lagrange multipliers at t.
� Our algorithm
As said before, in the standard procedure p0liðtÞ have been obtained in the implementation of the previous

step by applying SHAKE on velocities. Let us suppose now that we did not apply SHAKE on velocities in the
previous step and that, then, p0liðtÞ are still unknown. The momenta we know at this stage are only incomplete
momenta, which do not include constraint forces:
p0�liðtÞ ¼ p0liðtÞ �
Dt
2

GliðtÞ exp �Dt
2

P SðtÞ
MS

� �
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Neither p0liðtÞ nor Gli(t) are known. L11 and L10 are then applied to the pseudo momenta p0�liðtÞ. To
make the understanding easier, from now we will note with an asterisk the momenta obtained from this
pseudo momenta (p0�Ili , p0�II

li , etc.) in comparison with the momenta calculated from real p0li at time t (p0Ili,
p0II

li , etc.).
By applying L11 on the pseudo momenta, we get
p0�Ili ¼ p0�liðtÞaðtÞ
it is easy to show that real and pseudo momenta are linked:
p0�Ili ¼ p0Ili �
Dt
2

GliðtÞaðtÞ2
The application of L10 on p0�Ili then leads to:
p0�II
li ¼ p0�Ili þ

Dt
2

FliðtÞ þGliðtÞ �
mli

Ml
FlðtÞ

� �
¼ p0�WII

li þ p0�CII
li
which implicitly defines p0�CII
li and gives
p0�WII
li ¼ p0II

li �
Dt
2

GliðtÞ½aðtÞ2 þ 1�
At this stage, p0�WII
li is calculated while p0�CII

li and p0II
li will remain unknown until Step 14, like in the standard

procedure.
Steps 6–7. Application of propagators iL9–iL8:
All transformations concerning center-of-mass positions and momenta do not raise any problem sincePnl

i¼1Gli ¼ 0 in each molecule,
PI
l ¼ PlðtÞbðtÞ
where
bðtÞ ¼ exp �Dt
2

P SðtÞ
MS
þ P V ðtÞ

3V ðtÞMV

� �� �
and
PII
l ¼ PI

l þ
Dt
2

FlðtÞ
Step 8. Application of propagator iL7:
P I
S ¼ P SðtÞ þ gkB½T I � T EXT�

Dt
2

with
T I ¼ 1

gkB

X
i;l

p0II2
li

mli
þ
X

l

PII2
l

Ml

" #
At this step, we are not able to calculate TI since the expression of p0II
li is unknown (in the standard proce-

dure as well as in our algorithm). The completion of this step is postponed.
Steps 9–11. Application of propagators iL6–iL4:
P I
V ¼ P V ðtÞ exp �

P I
n

Mn

Dt
2

 !

P II
V ¼ P I

V þ ½PI �PEXT�
Dt
2

with
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PI ¼ 1

3V ðtÞ
X

l

PII2
l

Ml
þ FlðtÞ:RlðtÞ

" #
� o/

oV
ðtÞ

V I ¼ V ðtÞ þ P II
V

MV

Dt
2

Steps 12–13. Application of propagators iL3–iL2:
RI
l ¼ RlðtÞ exp

Dt
2

P II
V

3V IMV

� �

RII
l ¼ RI

l þ
Dt
2

PII
l

Ml
Steps 14. Application of propagator iL1:
The application of iL1 on r0liðtÞ should lead to:
r0liðt þ DtÞ ¼ r0liðtÞ þ Dt
p0II

li

mli
However p0II
li is unknown.

� Standard procedure
In the standard procedure,
r0Ili ¼ r0liðtÞ þ Dt
p0WII

li

mli
is first calculated. Then r0Ili is plugged in the subroutine SHAKE to obtain the Lagrange multipliers ka
lðtÞ

and finally get r0liðt þ DtÞ. p0CII
li and then p0II

li can be finally calculated, then TI and P I
S of step (8) too. It should

be noted here that, in the standard procedure, at this stage, the Lagrangian multipliers at time t could be
known as computed from imposing the constraints _r ¼ 0. The use of those k’s, however, is avoided since it
would induce instabilities in the conservation of the r’s.
� Our algorithm
The implementation is done here with p0�II

li :
r0�Ili ¼ r0liðtÞ þ Dt
p0�II

li

mli
and
r0�Ili ¼ r0liðt þ DtÞ � Dt2

2mli
½1þ aðtÞ2�Gli
Like previously, r0�Ili can be plugged in the subroutine SHAKE to obtain the Lagrange multipliers ka
l and

finally r0liðt þ DtÞ from r0�Ili .
At this stage, the real momenta p0II

li ¼ p0�II
li � Dt

2
GliðtÞ½aðtÞ2 þ 1� can be calculated, then TI and P I

S of step (8)
too.

So it is for the kinetic energy at time t, which can also be evaluated from the expressions of the momenta at
time t
p0liðtÞ ¼ p0�liðtÞ þ
Dt
2

GliðtÞ exp �Dt
2

P SðtÞ
MS

� �

unknown until now.

Steps 15–16. Application of propagators iL2–iL3:
RIII
l ¼ RII

l þ
Dt
2

PII
l

Ml

Rlðt þ DtÞ ¼ RIII
l exp

Dt
2

P II
V

3V IMV

� �
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Steps 17–19. Application of propagators iL4–iL6:
V ðt þ DtÞ ¼ V I þ P II
V

MV

Dt
2

Here, all energies and forces at t + Dt can be evaluated from r0liðt þ DtÞ, Rl(t + Dt) and V(t + Dt) at time
t + Dt.

Then,
P III
V ¼ P II

V þ ½PII �PEXT�
Dt
2

where
PII ¼ 1

3V ðt þ DtÞ
X

l

PII2
l

Ml
þ Flðt þ DtÞ:Rlðt þ DtÞ

" #
� o/

oV
ðt þ DtÞ
Finally,
P V ðt þ DtÞ ¼ P III
V exp �

P I
n

Mn

Dt
2

 !
Step 20, application of propagator iL7:
P Sðt þ DtÞ ¼ P I
S þ gkB½T I � T EXT�

Dt
2

where TI has the same expression as before.
Steps 21–22. Application of propagators iL8–iL9 :
PIII
l ¼ PII

l þ
Dt
2

Flðt þ DtÞ

Plðt þ DtÞ ¼ PIII
l bðt þ DtÞ
where
bðt þ DtÞ ¼ exp �Dt
2

P Sðt þ DtÞ
MS

þ P V ðt þ DtÞ
3V ðt þ DtÞMV

� �� �
Steps 23–24. Application of operators iL10–iL11:
By applying iL10 and iL11 on p0II

li , we get
p0III
li ¼ p0II

li þ
Dt
2

Fliðt þ DtÞ þGliðt þ DtÞ � mli

Ml
Flðt þ DtÞ

� �
And then
p0liðt þ DtÞ ¼ p0III
li aðt þ DtÞ
However, Gli(t + Dt) is unknown. Then the constraint term p0CIII
li must be isolated and only:
p0WIII
li ¼ p0II

li þ
Dt
2

Fliðt þ DtÞ � mli

Ml
Flðt þ DtÞ

� �
and then
p0Wli ðt þ DtÞ ¼ p0WIII
li aðt þ DtÞ
can be calculated.
In order to get
p0liðt þ DtÞ ¼ p0Wli ðt þ DtÞ þ p0Cli ðt þ DtÞ ¼ p0Wli ðt þ DtÞ þ Dt
2

Gliðt þ DtÞaðt þ DtÞ
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p0Wli ðt þ DtÞ can be plugged in the SHAKE subroutine to obtain ka
lðt þ DtÞ and then Gli(t + Dt). It is what is

done in the standard procedure.
In our algorithm instead, p0liðt þ DtÞ will remain unknown and the new pseudo momentum:
p0�liðt þ DtÞ ¼ p0Wli ðt þ DtÞ ¼ p0liðt þ DtÞ � Dt
2

Gliðt þ DtÞaðt þ DtÞ
will be used for the implementation in the next step, until the determination of r0liðt þ 2DtÞ will allow the
calculation of p0liðt þ DtÞ.

Steps 25–27. Application of propagators iL10–iL12 :
Finally,
P nðt þ DtÞ ¼ P I
n þ

P V ðt þ DtÞ2

MV
� kBT EXT

" #
Dt
2

nðt þ DtÞ ¼ nI þ P nðt þ DtÞ
Mn

Dt
2

gðt þ DtÞ ¼ gI þ P Sðt þ DtÞ
MS

Dt
2

It can be useful to note that this algorithm can be adapted for molecular dynamics in (NVT). It is sufficient
to eliminate the equations involving the variables n, Pn, V and PV, while taking PV = 0 in all the other equa-
tions. Additionally, for MD in (NVE) ensemble, it is necessary to eliminate also the equations involving g and
PS, while taking PS = 0 in all the other equations.

We have so demonstrated that the standard procedure, based on RATTLE algorithm, can be replaced by a
more recursive method, where unknown velocities are carried over the step without calling a second time
SHAKE to compute them. In the next section, we check the consistency between RATTLE and our algorithm.
3. Illustration and results

3.1. Bulk water

The algorithm was implemented and tested on a system constituted of 256 SCP/E water molecules [11]. As
SPC/E water is rigid, there are three holonomic constraints per molecule of the type: rij ¼ ðrli � rljÞ2 � d2

ij ¼ 0
or rij ¼ ðr0li � r0ljÞ

2 � d2
ij ¼ 0.

As a consequence:
_rij ¼ 2ðr0li � r0ljÞ:
p0li

mli
�

p0lj

mli

� �
¼ 0
The results we got with our algorithm were compared with the standard algorithm detailed before and in
which the constraints are applied twice, as it is done in RATTLE.

The simulations on water were performed with P = 1 bar, T = 298 K. The inertial factors MS, Mn and MV

are linked to the characteristic times of the response of the variables g, n and V. Possible expressions for these
times, sg, sn and sV, can be obtained by rewriting the equations of motion as follows:
s2
V

€V
V
¼ P

PEXT

� 1

� �
� s2

V
_n

_V
V

� �

s2
S€g ¼ T

T EXT

� 1

s2
n
€n ¼ s2

V

PEXTV
kBT EXT

_V
V

� �2

� 1
where we have defined s2
V ¼ MV V

PEXT
, s2

S ¼ MS
gkBT EXT

, and s2
n ¼

Mn

kBT EXT
.
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Several time constants were tested for both algorithms. A choice of a too short time constant can lead to
bad dynamical properties of the system and make it unstable. This is the case when sV is chosen smaller than
1 ps. For this value of sV, the average period of volume fluctuations is much too fast and the algorithms are
unstable. Values of sV were tested from 1 ps to 2000 ps. Volume fluctuations were very slow with the latter
value, with a period of about 100 ps. The algorithms were less sensitive to sS and sn.

The simulations whose results are given here were undertaken with values for sV, sS and sn equal respec-
tively to 6 ps, 60 fs and 60 fs. The time step was Dt = 1 fs. The SHAKE tolerance was chosen to be 10�12

for _rij and 10�10 for rij. The system was first equilibrated and simulations of 1 million steps (1000 ps) were
undertaken in order to get equilibrium properties. The average values are given in Table 1 for both algorithms.

As shown in Fig. 1 and in Table 1, the pseudo-hamiltonian H 0 is well conserved and the average quantities
are very close in both algorithms.

We also checked that the pair correlation functions g(O–O), g(O–H) and g(H–H) described well the struc-
ture of SPC/E water [11,12].
Table 1
Average quantities of 1 ns simulations obtained by both algorithms.

SPC/E Polymer

RATTLE This article This article

H 0 �37.8514 �37.8532 �5.4061
dH 0 0.0059 0.0052 0.0015
ETOT �39.029 �39.026 �5.8526
dETOT 0.496 0.492 0.1534
EP �46.450 �46.447 �28.628
dEP 0.420 0.416 0.094
T 297.46 297.45 134.99
dT 10.77 10.69 2.65
P �0.0018 �0.0021 4.30
dP 0.8438 0.8417 0.43
V 7701 7709 28328
dV 122 120 102

All the energies are given in kJ/mol, the temperature in K and the pressure in kbar.
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Fig. 1. NPT behavior of the conserved quantity H 0 for a system constituted of 256 SPC/E water molecules.
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As momenta at t are calculated indirectly from Lagrange multipliers coming from SHAKE procedure
on atomic positions, constraints on them may not be well conserved. Indeed, for each couple of atoms

(i, j) in a molecule, we should have: _rij ¼ 2ðr0li � r0ljÞ:
p0li

mli
� p0lj

mli

� �
¼ 0. Because our algorithm is not exact

in the constraints on momenta, _rij cannot be as small as if a SHAKE procedure were applied directly
to momenta at t.

As a test, we made an histogram of
_rij

2jr0li�r0ljj
p0
li

mli
�

p0
lj

mli

��� ���. It represents the cosinus of the angle between r0li � r0lj and

p0li

mli
� p0lj

mli
. The histogram of the corresponding angle is given in Fig. 2. It looks like a sum of a Dirac peak, and a

gaussian distribution, around 90�, which means that the vectors are, in average, orthogonal. The error on the
angle can be then evaluated at about 0.1%, which does not disturb neither the average of the kinetic energy,
nor the dynamical properties of the system : self-diffusion coefficients calculated from vacf and mean-squared
displacements agreed. To be completely convinced, we also checked that the spectra of O and H velocity auto-
correlation functions, obtained from trajectories of 1 ns in NVE ensemble with a time step of Dt = 1 fs with
both algorithms, exhibited the same characteristics of water short time dynamics.

The equivalence of the two algorithms is not surprising since in our approach the (numerical) error in the
momenta constraints is not propagated in time. In both algorithms, SHAKE calculates Lagrange multipliers
which differ from the analytical ones by a term which has the same order of error as the Verlet algorithm.
Therefore the two trajectories obtained by the two algorithms starting with the same initial configuration
should differ by the same order. In Fig. 3 we show the distance in configuration space of two trajectories,
i.e the sum

P
iðri1 � ri2Þ2, in function of time. We see that the two trajectories become completely uncorrelated

after 1.8–2.2 ps and that this time does not depend drastically on the time step (to improve further the behav-
ior with decreasing time step, one should also increase the precision of the calculations beyond double preci-
sion). We can conclude that the two algorithms are rigorously equivalent on the timescale of the characteristic
times of the various time correlation functions of physical interest (of the order of few ps). After this time, the
two algorithms will equivalently differ from the real trajectory. The only way to reduce numerical error on
larger characteristic times is to increase the numerical precision of the calculations and decrease the time step
for both algorithms.
89.7 89.8 89.9 90 90.1 90.2 90.3

angle /degrees

0

1

2

3

4

5

di
st

ri
bu

tio
n

Fig. 2. Distribution of angles between r0li � r0lj and
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for water atoms.
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Fig. 3. The cartesian distance,
P

iðri1 � ri2Þ2=N , in time, for different timesteps, of the two configurational trajectories computed using the
standard RATTLE algorithm and the one introduced in this paper. The trajectories remain very close until 1.8–2.2 ps.
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3.2. Polymer

In the water example, no CPU time is gained by our algorithm since the overhead of the SHAKE procedure
is negligible compared to the calculation of the interactions.

However, it can be interesting to see what happens when systems with many holonomic constraints are con-
sidered. Tests were done on a system containing a linear polymer of 2000 atoms immersed in an Argon fluid of
400 atoms. The distance between two adjacent atoms in the polymer was constrained to be equal to 1.41 Å. LJ
parameters for Argon were taken from Levesque and Verlet [13]: �Ar = 0.996 kJ/mol and rAr = 3.405 Å. For

the atoms of the polymer, we took: � = 0.485 kJ/mol and r = 2.20 Å. LJ parameters between Ar and polymer
atoms were obtained by the Lorentz–Berthelot rules:
rij ¼
ri þ rj

2
ð2Þ

�ij ¼
ffiffiffiffiffiffiffi
�i�j
p ð3Þ
In order to simulate a quite dense system, the pressure and the temperature were chosen to be: P = 4.3 kbar
and T = 135 K. The time step and the masses of barostats and thermostats were the same as in the previous
section.

Average quantities obtained after stabilization of the box volume are given in Table 1 for our algorithm.
Here again, the pseudo-hamiltonian is well conserved.

The speed of both algorithms were compared. Because the polymer is quite long, the evaluation of
Lagrange multipliers at the beginning of the SHAKE procedure is not done by the matrix method which
would require the inversion of a matrix of large dimensions. The constraints were then calculated with the iter-
ative procedure of Ciccotti and Ryckaert [14]. The tolerance was chosen to be 10�12 for _rij and 10�6 for rij. In
the standard algorithm, an average of 56 iterations were necessary for SHAKE on positions to converge (step
14) and 80 iterations for SHAKE on velocities (step 24). In our algorithm, 63 iterations were needed for
SHAKE on positions to converge. A decrease of the SHAKE-positions tolerance to 10�7 leads to an approx-
imate increase of the number of iterations by 5. Let us note that except for very small timesteps, the number of
iterations remains in the same order of magnitude.

In both algorithms, about 99% of the CPU time was spent in the subroutine calculating the interactions
between the atoms (step 17) and in SHAKE (steps 14 and 24). The usual RATTLE algorithm spent between
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67% and 70% of the CPU time in the calculation of the interactions, 17–18% in the SHAKE procedure for the
positions and 12–13% in the SHAKE procedure for the velocities. In our algorithm, these percentages became
77–78%, 21–22% and 0, since SHAKE for velocities is not called, with a global CPU time gain of 10–11%.
Simulations were carried out with polymers of various sizes, with the same number of gas atomes. For poly-
mers with 500 and 1000 atoms, the percentages spent in each subroutine were almost the same, leading to a
global CPU time gain between 9% and 11%. No obvious trend could be found in the gain in CPU time versus
the number of polymer atoms. The gain should depend on the number of interactions to be calculated, as well
as on the number of constraints (and the number of iterations necessary to converge in SHAKE), so that the
previous estimations can be just useful to give an idea. Note, however, that we used a simple algorithm to cal-
culate the interactions between atoms. Every algorithm which will increase the speed of this calculation (neigh-
bour-list method or linked cell algorithm for example) should increase also the relative percentage of CPU
time spent in the SHAKE procedure, implying a better gain in CPU time.

In conclusion, the algorithm we present here is not only without inconsistencies but spends less time in the
constraints calculation than the standard RATTLE algorithm. The saving can be non negligible, especially for
systems with a large number of constraints.

4. Conclusion

We have introduced a variant of the standard RATTLE algorithm used when performing NVE, NVT or
NPT molecular dynamics simulations of molecular systems with holonomic constraints. We showed that
SHAKE does not need to be applied twice in a step since momenta at t can be kept unknown until the middle
of the following step. The procedure eliminates the inconsistency present in Andersen’s velocity algorithm
which computes twice, and with different procedure, the values of the Lagrange multipliers at the same time.
This makes the algorithm faster, although not dramatically, in particular for large (e.g biological) molecules,
connected by a large number of constraints. For this purpose, we employed the recursive method based on the
procedure developed by Tuckerman et al. [9], using Trotter formula, and extended to the case of systems sub-
jected to constraints in Refs. [5,10]. This method allows to calculate properly the constraint forces. An iden-
tical recursive procedure could be applied to the more interesting case of coexistence of constraints and
multiple time step algorithm. Work is in progress in that direction.
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